
Computing a visibility polygon using few
variables

Luis Barba1, Matias Korman2, Stefan Langerman?2, and Rodrigo I. Silveira??3

1 Universidad Nacional Autónoma de México (UNAM), Mexico D.F., Mexico.
l.barba@uxmcc2.iimas.unam.mx

2 Université Libre de Bruxelles (ULB), Brussels, Belgium.
{mkormanc,slanger}@ulb.ac.be

3 Universitat Politècnica de Catalunya (UPC), Barcelona, Spain.
rodrigo.silveira@upc.edu

Abstract. We present several algorithms for computing the visibility
polygon of a simple polygon P from a viewpoint inside the polygon,
when the polygon resides in read-only memory and only few working
variables can be used. The first algorithm uses a constant number of
variables, and outputs the vertices of the visibility polygon in O(nr̄) time,
where r̄ denotes the number of reflex vertices of P that are part of the
output. The next two algorithms use O(log r) variables, and output the
visibility polygon in O(n log r) randomized expected time or O(n log2 r)
deterministic time, where r is the number of reflex vertices of P.

1 Introduction

The visibility polygon of a simple polygon P from a viewpoint q is the set of all
points of P that can be seen from q, where two points p and q can see each other
whenever the segment pq is contained in P. The visibility polygon is a funda-
mental concept in computational geometry and one of the first problems studied
in planar visibility. The first correct and optimal algorithm for computing the
visibility polygon from a point was found by Joe and Simpson[10]. It computes
the visibility polygon from a point in linear time and space. We refer the reader
to the survey of O’Rourke [13] and the book of Gosh [8] for an extensive survey
of such problems.

In this paper we look for an algorithm that computes the visibility polygon
of a given point and uses few variables. This kind of algorithms not only provides
an interesting trade-off between running time and memory needed, but also is
very useful in portable devices where important hardware constraints are present
(such as the ones found in digital cameras or portable phones).

A significant amount of research has focused on the design of algorithms that
use few variables, some of them even dating from the 80s [11]. Although many

? Mâıtre de Recherches du FRS-FNRS.
?? Funded by the FP7 Marie Curie Actions Individual Fellowship PIEF-GA-2009-

251235.



2 Luis Barba, Matias Korman, Stefan Langerman, and Rodrigo I. Silveira

models exist, most of the research considers that the input is in some kind of
read-only data structure. In addition to the input values we are allowed to use
few additional variables (typically a logarithmic amount).

One of the most studied problems in this setting is that of selection. For
any constant ε ∈ (0, 1), Munro and Raman [12] give an algorithm that runs
in O(n1+ε) time and uses O(1/ε) variables. Frederickson [7] improved this re-
sult with an algorithm whose running time is O(n log∗ s + n log n/ log s) when
s working variables are available (and s ∈ Ω(log n) ∩ O(2logn/ log

∗ n)). When-
ever only O(log n) variables are available, Raman and Ramnath[14] gave an
algorithm whose running time is O(n log2 n). More recently Chan [5] provided
several lower bounds for performing selection with few variables and modified the
O(n log logs n) expected time algorithm of Munro and Raman so that it works
for any input array.

Recently, there has been an interest in finding algorithms for geometric prob-
lems that use a constant number of variables: Given a set of n points, the well-
known gift-wrapping algorithm (also known as Jarvis march [15]) can be used
to report the points on the convex hull in O(nh̄) time using a constant number
of variables, where h̄ is the number of vertices on the convex hull. Asano and
Rote [3] and afterwards Asano et al. [2] gave efficient methods for computing
well-known geometric structures, such as the Delaunay triangulation, Voronoi
diagram and minimum spanning tree using a constant number of variables (in
O(n2), O(n2) and O(n3) time, respectively) Observe that, since these structures
have linear size, they are not stored but reported.

To the best of our knowledge, there is no known method that computes the
visibility polygon of a given point and uses few variables. The question of finding
a constant workspace algorithm to compute the visibility polygon in a polygon
of size n was explicitly posed as an open problem by Asano et al. [1]. A natural
approach to the problem would be to transform the linear time-algorithm of Joe
and Simpson [10] to a constant workspace algorithm. However, their algorithm
cannot be directly adapted to our setting, since their method uses a stack which
could contain up to Ω(n) vertices.

Results In this paper, we consider a completely different approach. It is easy to
realize that the differences between P and the visibility polygon of a given point
depends on the number of reflex vertices. For example, if P is a convex polygon,
the two polygons will be equal, but we cannot expect this to hold when the
number of reflex vertices grows. Therefore whenever possible we will express the
running time of our algorithms not only in terms of n, the complexity of P, but
also in terms of r and r̄ (the number of reflex vertices in the input and the number
of them also present in the output, respectively). This approach continues a line
of research relating the combinatorial and computational properties of polygons
to the number of their reflex vertices. We refer the reader to [4] and references
found therein for a deep review of existing similar results.

In Section 3 we give an output-sensitive algorithm that reports the vertices
of the visibility polygon in O(nr̄) time using O(1) variables. In Section 4 we



Computing a visibility polygon using few variables 3

show that if we are allowed to use O(log r) variables, the problem can be solved
in O(n log r) randomized expected time or O(n log2 r) deterministic time.

2 Preliminaries

Model definition and considerations on input/output precision We use
a slight variation of the constant workspace model (sometimes also referred as log
space), introduced by Asano [3]. In this model, an algorithm can use a constant
number of variables and assume that each variable or pointer contains a data
word of O(log n) bits. Implicit storage consumption required by recursive calls
is also considered a part of the workspace.

The input of the problem is a polygon P in a read-only data structure. In
the usual constant workspace model, we are allowed to perform random access
to any of the values of the input in constant time. However, in this paper we
consider a weaker model in which the only allowed operation to the input is
obtaining coordinates of the next counterclockwise vertex of a given vertex of
P. This is the case in which, for example, the vertices of P are given in a list in
counterclockwise order.

Many other similar models exist in the literature. We note that in some of
them (like the streaming [9] or the multi-pass model [6]) the values of the input
can only be read once or a fixed number of times. We follow the model of constant
workspace and allow scanning the input as many times as necessary.

The algorithm given in Section 3 uses a weaker model than the constant
workspace model (since random access to the vertices of the input is not used).
The methods given in Section 4 use a logarithmic number of variables, providing
another compromise between the space and time complexity of this problem.

Let n be the number of vertices of P. We do not make any assumptions
on whether the input coordinates are rational or real numbers (in some im-
plicit form). The only operations that we perform on the input are determining
whether a given point is above, below or on a given line and determining the
intersection point between two lines. In both cases, the line is defined as pass-
ing through two points of the input, hence both operations can be expressed as
finding the root of linear equations whose coefficients are values of the input. We
assume that these two operations can be done in constant time. Observe that if
the coordinates of the input are algebraic values, we can express the coordinates
of the output as “the intersection point of the line passing through points vi and
vj and the line passing through vk and vl” (where vi, vj , vk and vl are vertices
of the input).

Other definitions The boundary of P is denoted by ∂P. We regard P as a
closed subset of the plane. We are also given a point q inside P, from where the
visibility polygon needs to be computed. The segment connecting points p and q
is denoted by pq. We say that a point p ∈ P is visible (with respect to q) if and
only if pq ⊂ P (otherwise we say that p is not visible). The set of points that are
visible from q is denoted by VisP(q) and is called the visibility polygon of q. It



4 Luis Barba, Matias Korman, Stefan Langerman, and Rodrigo I. Silveira

q v0
vn

P

v1

q
vn

P

v1
VisP(q)

v0

p

v4

Fig. 1. Left: general setting, vertices that are reflex with respect to q are shown with
a white point (black otherwise). Right: the visibility polygon VisP(q) of q; point p is
the shadow of vertex v4.

is easy to see that the visibility polygon of q is a closed polygon whose vertices
are either vertices of P or the intersection point between a segment of P and a
ray emanating from q (see Figure 1).

From now on, for simplicity in the explanation, we assume that no line passes
through q and two vertices of P. We note, however, that our algorithms can be
adapted to work in the general case with only minor changes. We also need to
define what a reflex vertex is in our context. Given any vertex vk, the line `k
passing through vk and q splits P \ `k into disjoint components. We say that
vertex vk is reflex with respect to q if the angle at the vertex interior to P is more
than π and the vertices vk−1 and vk+1 lie on the same connected component of
R2 \ `k (see Figure 1). Observe that any vertex that is reflex with respect to q is
a reflex vertex (in the usual sense), but the converse is not true.

Intuitively speaking, reflex vertices with respect to q are the vertices where
topological changes might occur in the visibility polygon. That is, the positions
where the polygon boundary can change between visible or invisible. Since the
point q is fixed, from now on we omit the “with respect to q” term and simply
refer to these points as reflex. Let r be the number of reflex vertices of P. We
also define r̄ as the number of reflex vertices of P that are present in VisP(q).
Observe that we always have r̄ ≤ r < n.

Given any two points p1, p2 ∈ ∂P, there is a unique path that travels coun-
terclockwise along the boundary of P from p1 to p2. Let Chain(p1, p2) be the set
of points traversed in this path, including both p1 and p2 (this set is called the
chain between p1 and p2). We say that a chain is visible if all the points of the
chain are visible from q. A visible chain C = Chain(p1, p2) is CCW-maximal if
it is visible and no other visible chain starting at p1 strictly contains C. We will
use the term Chain(p, p) to denote the whole polygon boundary.

Given a point p ∈ P, let θ(p) be the angle that the ray emanating from q and
passing through p makes with the positive x-axis, 0 ≤ θ(p) < 2π. Let v0 be the
closest point on ∂P to q, such that θ(v0) = 0. It is easy to see that v0 is visible
and can be computed in linear time. Without loss of generality, we will treat v0



Computing a visibility polygon using few variables 5

as a vertex (even though it does not need to be one). Moreover, we will assume
that the vertices are numbered such that v0 is on edge vnv1.

A point p on ∂P is the shadow of a reflex vertex v if p is collinear with q
and v, and p is visible from q. Due to the general position assumption, v must
be unique and p must be an interior point of an edge. As a result, each reflex
vertex is uniquely associated to a shadow point (and vice versa).

In this paper, we will often use a ray shooting-like operation, which we call
RayShooting(p). This is a basic operation that given a point p ∈ ∂P, considers
the ray ρ(q, p) and reports the first point of P hit by the ray. This operation
can be done in linear time, by scanning the edges of P one by one and reporting
the point closest to q that intersects the ray. Another similar operation that our
algorithms will use is computing the shadow of a given reflex vertex v. For that
case, we will use the FindShadow(p) operation, which gives the shadow of p if
p is a reflex vertex (p otherwise). Finally we note that, due to space constraints,
some of the proofs of this paper have been omitted.

3 An O(nr̄) algorithm using O(1) variables

In this section we present an output-sensitive algorithm that spends linear time
for each reflex vertex in the visibility polygon. The idea of the algorithm is to
compute maximal visible chains as they appear on the boundary of P. Each
iteration of the algorithm starts from a point that is known to be visible, and
finds the last point of the CCW-maximal chain that starts at that point. This
is repeated until the initial vertex is found again.

The following lemma characterizes the endpoints of CCW-maximal chains.

Lemma 1. Let p ∈ ∂P be a point visible from q, and let C = Chain(p, p′) be a
CCW-maximal chain. Then p′ is either (i) equal to p, (ii) a reflex vertex of P,
or (iii) the shadow of some reflex vertex of P.

Based on the previous lemma, the algorithm will start from v0 and walk on
∂P in counterclockwise direction, identifying the endpoint of the current CCW-
maximal chain.

Let p be a visible point and let vr be the first reflex vertex found on ∂P when
going counterclockwise from p. Chain(p, vr) and the segments qp and qvr define
a region that we will denote by R(p, vr). The following observation is crucial for
the algorithm.

Lemma 2. Let p be a visible point and let vr be the first reflex vertex encountered
on ∂P when going from p in counterclockwise direction. Then vr is visible if and
only if R(p, vr) contains no vertex from P, or equivalently, if and only if no edge
of P crosses the segment qvr.

Let FindNextReflexVertex(p) be a routine that returns the first reflex
vertex vr found on ∂P counterclockwise from p in O(n) time. If no such vertex
exists the remaining portion of P is convex (and thus all vertices until v0 can be



6 Luis Barba, Matias Korman, Stefan Langerman, and Rodrigo I. Silveira

reported as visible). Otherwise, vertex vr is identified and we need to find the
end of the chain p′, which starts at p. For that we will determine if R(p, vr) is
empty, or equivalently, if RayShooting(vr) = vr.

q v0

e
vj

vr
p′

p

R(p, vr)

Fig. 2. When the next reflex ver-
tex, vr in the figure, is not visi-
ble, the end of the current visibility
chain (p′) can be found by walk-
ing on ∂P. The shaded region is
R(p, vr).

If so, we have p′ = vr and we can re-
port all vertices in the chain Chain(p, vr).
Then the next visible chain must start at the
shadow of vr, which can be found with the
FindShadow(vr) operation. Otherwise, from
Lemma 1 we know that vr is not visible and
p′ must be the shadow of some reflex vertex
in Chain(vr, v0). To find that reflex vertex we
need one more observation.

Observation 1 Let p be a visible point and
let vr be the first reflex vertex encountered
on ∂P when going from p in counterclock-
wise direction. If vr is not visible, then the
CCW-maximal chain starting at p ends at the
shadow of the reflex vertex in R(p, vr) with
smallest CCW-angle with respect to the seg-
ment qp.

Therefore the algorithm only needs to find
the reflex vertex with smallest angle that lies inside R(p, vr), which can be done
in O(n) time by simply walking on ∂P and keeping track of the intersections
with the line segment qvr. Figure 2 illustrates a step of the algorithm.

Observe that in all cases, the total time spent in finding the end of the
current chain and the beginning of the next one is O(n). Hence, it follows that
the total time of the algorithm is now O(r̄n), where r̄ is the number of vertices
reflex w.r.t. q in the visibility polygon of q. Moreover, this algorithm can be
implemented such that only one pass through the polygon vertices is needed for
each reflex vertex that appears in the output (plus one initial pass for finding
v0). Algorithm 1 sketches how the algorithm would look. Note also that such
implementation requires only 3 variables and 1 bit of additional space.

Theorem 1. The visibility polygon of a point q can be computed in O(nr̄) time
using constant workspace, where r̄ is the number of reflex vertices that are part
of the visibility polygon. More precisely, it can be computed in (r̄ + 1) passes
through the input and using 3 variables and 1 bit.

4 An O(n log r) algorithm using O(log r) variables

In this section we take a completely different approach to solve the problem.
We consider the visibility problem in polygonal chains (instead of the whole
polygon) and use a divide and conquer approach to split the problem into two
subproblems. For this purpose, we must adjust the visibility definitions to make
them consistent for chains.



Computing a visibility polygon using few variables 7

Algorithm 1 Output-sensitive algorithm for visibility polygon
1: p← v0, r ← +∞
2: repeat
3: Walk starting from p until next reflex vertex before v0
4: r ← index of reflex vertex found (or +∞ if none found)
5: if r < +∞ then
6: Walk from vr until p, keep track of vertex with smallest angle inside R(p, vr)
7: j ← vertex with smallest angle in R(p, vr) (j=+∞ if none found)
8: if j = +∞ then
9: (* vr is visible *)

10: Walk and report all points from p until finding vr, including vr (but not p)

11: Let vs be the shadow of vr
12: p← vs
13: else
14: (* vj found, vr is not visible *)
15: Let p′ be the shadow of vj
16: Walk and report all points from p until finding p′, including p′

17: p← vj
18: end if
19: end if
20: until r = +∞
21: Report all vertices between p and v0

p0

q

Cx

y

pm

Fig. 3. Polygonal chain C and its associated
polygon PC . Point x is C-visible, y is not.

Let C = {p0, . . . , pi, . . . , pm} be
a polygonal subchain of the bound-
ary of P, such that p0, pm are both
visible points on the boundary of P
and pi is a vertex of P, 1 ≤ i ≤
m − 1. Assume without loss of gen-
erality that α = θ(p0) < θ(pm) = β,
and let PC = {q, p0, p1, . . . , pm, q} be
the polygon contained in P obtained
by joining q with both endpoints of
C; see Figure 3. We say that a point
x on a polygonal chain C is C-visible
(from q), if the segment qx is com-
pletely contained in the polygon PC .
Let VisC(q) = {x ∈ C : x is C-visible} be the set of all C-visible points of C.

Lemma 3. Let C = {p0, . . . , pm} be a polygonal chain such that p0, pm are both
visible points on the boundary of P, and let x be a visible point inside C lying on
the edge pjpj+1. If C1 = {p0, . . . , pj , x}, C2 = {x, pj+1, . . . , pm}, then VisC(q) =
VisC1

(q) ∪VisC2
(q) and VisC1

(q) ∩VisC2
(q) = x.

Using a similar argument it is easy to see that if x is C-visible, and both
p0, pm are visible from q, then x is a visible point of P. Thus Lemma 3 allows us



8 Luis Barba, Matias Korman, Stefan Langerman, and Rodrigo I. Silveira

to divide the problem of finding VisP(q) into a series of subproblems that can
be solved independently without compromising the output.

Let ∆(C) be the interior of the cone with apex q defined by the rays going
from q and passing through both endpoints of C (and crossing the interior of
the chain). Our divide and conquer algorithm is as follows. On each step of the
algorithm we choose a random reflex vertex z inside the cone ∆(C), we then
perform a ray shooting query to find the first point x on C in the direction of
z. We split the polygonal chain C at x, thereby obtaining two subchains C1, C2;
see Figure 4. We repeat the process recursively first on C1 and then on C2, until
C is split into a series of subchains, each containing no reflex vertex inside their
associated cone. Since the changes in visibility occur only at reflex vertices, the
visible vertices inside each split subchain can be reported independently in the
order in which they are found; see Figure 4.

q

x

z
C1C2

p0

pm

q

C

∆(C)
p0

pm

s

Fig. 4. Left: Split of C into two subchains C1, C2 using a visible point x in the direction
of a random reflex vertex z. Right: A polygonal chain C with no reflex vertices inside
the cone ∆(C), note that only one subchain of C is visible.

The main algorithm presented in this section is summarized in Algorithm 2.
The subroutine ReportVisibleChain(x) takes a visible point x on C, walks
from x towards pm and reports every vertex until finding an edge e of C in-
tersecting the ray ρ(q, pm), once found that intersection is reported and the
subroutine ends.

Lemma 4. Algorithm 2 reports every visible edge of VisC(q) in counterclockwise
order.

Lemma 5. The expected running time of Algorithm 2 is O(n log r).

Proof. (Sketch) The running time of Algorithm 2 can be analyzed in a similar
way to the one of quicksort. On each step, a random pivot is chosen and it is used
to split the chain C, such that each subchain obtained contains in expectation
a fraction of the reflex vertices. Thus if we look at the recursion tree, it is easy
to see that on each level O(n) operations are needed and the expected depth of
the tree is O(log r), resulting in an expected running time of O(n log r). ut



Computing a visibility polygon using few variables 9

Algorithm 2 Given a polygonal chain C = {p0, . . . , pm} such that p0, pm are
both visible points of P, algorithm to compute VisC(q)
1: k ← number of reflex vertices of C inside the cone ∆(C)
2: if k = 0 then
3: s← FindShadow(p0)
4: if s 6= p0 then
5: Report p0
6: end if
7: ReportVisibleChain(s)
8: else
9: r ← random number in {1, . . . , k}

10: z ← the r-th reflex vertex of C inside ∆(C)
11: x← RayShooting(z)
12: Call Algorithm 2 on C1 = {p0, . . . , x}
13: Call Algorithm 2 on C2 = {x, . . . , pm}
14: end if

Theorem 2. The visibility polygon of point q can be computed in O(n log r)
expected time using O(log r) variables.

Proof. (Sketch) In each step of the recursion a constant number of variables are
needed. Hence, the number of words used by the algorithm is proportional to the
depth of the recursion. In order to avoid using an excessive amount of memory,
we use a standard trick of restarting the algorithm whenever the recursion tree
becomes too deep. ut

We now describe a deterministic variant of Algorithm 2 that runs onO(n log2 r)
time using O(log r) words. Let R = {θ(vi) : vi is a reflex vertex inside ∆(C)}
and let n, k be the number of vertices of C and the cardinality of R respectively.
Recall that in steps 9 and 10 of Algorithm 2 we are choosing a random reflex
vertex v inside ∆(C) and using it to split the chain C into two subchains C1, C2,
such that the number of reflex vertices inside ∆(C1) and ∆(C2) is balanced in ex-
pectation. The next variant of Algorithm 2 replaces the random selection with
a deterministic selection algorithm that guarantees a balanced split, albeit at
a slight increase in the running time. The algorithm is based in the approxi-
mate median pair algorithm proposed by Raman and Ramnath [14], in which
an approximation of the median of a set of m elements can be computed using
O(logm) variables in O(logm) passes.

Theorem 3. The visibility polygon of point q can be computed in O(n log2 r)
time using O(log r) variables.

5 Closing Remarks

One expects that the running time of a constant workspace algorithm increases
when compared to other models in which memory is not an issue. In most geo-
metric problems, the increase in the running time is almost equal to the reduction



10 Luis Barba, Matias Korman, Stefan Langerman, and Rodrigo I. Silveira

in memory space [2,3]. The algorithm given in Section 3 follows a similar pat-
tern, since in the worst case the time-space product matches the one of Joe and
Simpson [10] (from O(n2) to O(nr̄)). However, notice that the improvement of
the algorithm given in Section 4 is much better, since the time-space product
becomes O(n log n)×O(log r) = O(n log n log r).

If we compare the two methods given in this paper, we obtain a linear re-
duction in the running time by increasing the memory space by a logarithmic
factor. This is due to the fact that this space allowed us to use more powerful
techniques, such as divide and conquer. It would be interesting to study if the
same result holds for other geometric problems (such as computing the Voronoi
diagram, Delaunay triangulation or convex hull).

References

1. T. Asano, W. Mulzer, G. Rote, and Y. Wang. Constant-work-space algorithm for
geometric problems. Submitted to Journal of Computational Geometry, 2010.

2. T. Asano, W. Mulzer, and Y. Wang. Constant-work-space algorithm for a shortest
path in a simple polygon. In Md. S. Rahman and S. Fujita, editors, WALCOM,
volume 5942 of Lecture Notes in Computer Science, pages 9–20. Springer, 2010.

3. T. Asano and G. Rote. Constant-working-space algorithms for geometric problems.
In CCCG, pages 87–90, 2009.

4. P. Bose, P. Carmi, F. Hurtado, and P. Morin. A generalized Winternitz theorem.
Journal of Geometry, In Press.

5. Timothy M. Chan. Comparison-based time-space lower bounds for selection. ACM
Trans. Algorithms, 6:26:1–26:16, April 2010.

6. T.M. Chan and E.Y. Chen. Multi-pass geometric algorithms. Discrete & Compu-
tational Geometry, 37(1):79–102, 2007.

7. Greg N. Frederickson. Upper bounds for time-space trade-offs in sorting and se-
lection. J. Comput. Syst. Sci., 34(1):19–26, 1987.

8. S. Ghosh. Visibility Algorithms in the Plane. Cambridge University Press, New
York, NY, USA, 2007.

9. M. Greenwald and S. Khanna. Space-efficient online computation of quantile sum-
maries. In SIGMOD, pages 58–66, 2001.

10. B. Joe and R. B. Simpson. Corrections to Lee’s visibility polygon algorithm. BIT
Numerical Mathematics, 27:458–473, 1987. 10.1007/BF01937271.

11. J.I. Munro and M. Paterson. Selection and sorting with limited storage. Theor.
Comput. Sci., 12:315–323, 1980.

12. J.I. Munro and V. Raman. Selection from read-only memory and sorting with
minimum data movement. Theor. Comput. Sci., 165:311–323, October 1996.

13. J. O’Rourke. Visibility. In Handbook of Discrete and Computational Geometry,
chapter 28, pages 643–664. CRC Press, Inc., 2nd edition, 2004.

14. Venkatesh Raman and Sarnath Ramnath. Improved upper bounds for time-space
tradeoffs for selection with limited storage. In Proceedings of the 6th Scandinavian
Workshop on Algorithm Theory, SWAT ’98, pages 131–142, London, UK, 1998.
Springer-Verlag.

15. R. Seidel. Convex hull computations. In Handbook of Discrete and Computational
Geometry, chapter 22, pages 495–512. CRC Press, Inc., 2nd edition, 2004.


	Computing a visibility polygon using few variables

